Chapter 2

Section 2.3
Warm-up Problem A. For each of the following functions, give the domain and range, and evaluate at $x=0$.
(a) $f(x)=\sqrt{x}$
(c) $f(x)=\sqrt{x}-7$
$D: x \geqslant 0 \quad R: f(x) \geqslant 0 \quad f(0)=0$
D: $x \geqslant 0 \quad$ Q: $f(x) \geqslant-7 \quad f(0)=-7$
(b) $f(x)=\sqrt{x}+2$
(d) $f(x)=\sqrt{x}+20$
$D: x \geqslant 0 R: f(x) \geqslant 2 \quad f(0)=2$
$D: x \geqslant 0 \quad R: f(x) \geqslant 20 \quad f(0)=20$

Warm-up Problem B. For each of the following functions, give the domain and range, and find the x value for which $f(x)=2$.
(a) $f(x)=\sqrt{x}$
(c) $f(x)=\sqrt{x+6}$
D: $x \geqslant 0 \quad f(4)=2$
D: $x+6 \geqslant 0 \Leftrightarrow x \geqslant-6$
R: $f(x) \geqslant 0 \quad x=4$
R. $f(x) \geq 0 \quad \begin{aligned} f(-2) & =2 \\ x & =-2\end{aligned}$
(b) $f(x)=\sqrt{x-4}$
(d) $f(x)=\sqrt{x-31}$
$D: x-4 \geqslant 0 \Leftrightarrow x \geqslant 4$
$R: f(x) \geqslant 0 \quad f(8)=2$ $x=8$
p: $x-3 \mid \geqslant 0 \Rightarrow x \geqslant 31$ $f(x) \geqslant 0 \quad x-31=4 \Leftrightarrow x=35$

Problem 1. Find explicit formulas (in terms of x) for the following functions, and describe in words how the graphs of the following functions differ from $f(x)=\sqrt{x}$. For example, the explicit form of $g(x)=f(x)+2$ would be $g(x)=\sqrt{x}+2$.
(a) $g(x)=f(x)+1$
(b) $h(x)=f(x)-4$
(c) $j(x)=f(x)+\sqrt{7}$
shifted up 1

shifted up $\sqrt{7}$

Problem 2. Consider the graphs of $f(x), g(x)$, and $h(x)$ below. Find formulas for $g(x)$ and $h(x)$ in terms of $f(x)$.

Problem 3. Find explicit formulas (in terms of x) for the following functions, and describe in words how the graphs of the following functions differ from $f(x)=x^{2}$.
a) $g(x)=f(x+1)$ shifted left 1

$$
=(x+1)^{2}=x^{2}+2 x+1
$$

b) $h(x)=f(x-3) \quad$ Shifted right 3

$$
=(x-3)^{2}=x^{2}-6 x+9
$$

c) $j(x)=f(x+\pi)$

$$
(x+\pi)^{2}=x^{2}+2 \pi x+\pi^{2} \text { shifted left } \pi
$$

Problem 4. The graph of $f(x)$ appears below.

Match each of the following functions with the correct graph:
a) $f(x)+1 \quad$ iii
c) $f(x-2)$
e) $f(x)-1$ \qquad
b) $f(x-1)+3$ \qquad d) $f(x+2)-3 \xrightarrow{\mathbf{V}}$
f) $f(x+2) \quad i \quad$ \qquad

Problem 5. The cost of renting a limo has a flat fee of $\$ 100$ plus $\$ 40$ per hour.
a) Find a formula for $C(x)$, the total cost for renting a limo for x hours.

$$
C(x)=100+40 x
$$

b) If the flat fee is raised by $\$ 30$, find a formula for the new total cost function, $D(x)$, in terms of $C(x)$.

$$
D(x)=C(x)+30
$$

c) The limo driver increases the flat fee by $\$ 30$, and leaves the cost per hour as $\$ 40$, but includes the first hour for free. Express $F(x)$, the new total cost, as a transformation of $C(x)$.

$$
F(x)=D(x-1)=C(x-1)+30
$$

Problem 6. The function $g(x)$ is pictured below. Graph the function $g(x+2)-1$ on the provided set of axes.

Problem 7. Suppose that the population of Town A in thousands of people t years after 1990 is given by $P(t)$, shown in the graph below.

(a) Suppose Town B has a population given by $P(t)+3$. What is Town B's population in 1993? 1995? Interpret the population of Town B in terms of the population of Town A.

$$
p(3)+3=1+3=4 \quad P(5)+3=2+3=5
$$

(b) Suppose Town C has a population given by $P(t-1)$. What is Town C's population in 1991? 1998? Interpret the population of Town C in terms of the population of Town A .

$$
P(1-1)=P(0)=2 \quad P(8-1)=P(7)=3
$$

Problem 8. Let $f(x) \neq x^{3}-x_{i}^{2}+4$. Graph each of the following functions. Dent like that \mathbb{C}
(a) $f(x)$
(b) $-f(x)$
(c) $f(-x)$

$4-5-4-3$
i

Problem 9. Find a formula for the function whose graph is the graph of $f(x)=(x-1)^{2}$ reflected across the ${ }^{2}$ d x-axis. Use your calculator to check your formula by graphing both it and the function $f(x)$ on the same axes.

$$
-f(x)=-(x-1)^{2}
$$

Problem 10. Find a formula for the function whose graph is the graph of $f(x)=(x-1)^{2}$ reflected across the y-axis. Use your calculator to check your formula by graphing both it and the function $f(x)$ on the same axes.

$$
f(-x)=(-x-1)^{2}=(x+1)^{2}
$$

Problem 11. The graph of $y=f(x)$ contains the point $(1,4)$. What point must lie on the resulting graph if the graph is
(a) reflected about the y-axis? $(-1,4)$
(b) reflected about the x-axis?

$$
(1,-4)
$$

(c) translated down 2 units?

$$
(1,2)
$$

(d) translated right by 1 unit?
(e) reflected about the x-axis, then shifted up by 1 unit? $(1,4) \rightarrow(1,-4) \rightarrow(1,-3)$
(f) translated up by 1 unit, then reflected about the x-axis? $(1,4) \rightarrow(1,5) \rightarrow(1,-5)$

Problem 12. Suppose $f(x)$ is an even function. Fill in as many missing values in the following table as possible. If it is not possible to fill in a value, explain why it is not.

x	-6	-4	-2	0	2	4	6
$f(x)$	-1	2	5		5	2	-1

$$
f(-x)=f(x)
$$

Problem 13. Suppose $f(x)$ is an odd function. Fill in as many missing values in the following table as possible. If it is not possible to fill in a value, explain why it is not.

x	-6	-4	-2	0	2	4	6
$f(x)$	1	2	-5		5	-2	-1

$$
f(-x)=-f(x)
$$

Problem 14. The graph of $g(x)$ can be found below. On the first provided axes, graph $g(-x)$. On the second provided axes, graph $-g(x)+2$.

Problem 15. Describe the shifts/reflections that can be applied to $f(x)$ in the correct order to obtain a graph of the following:
(a) $y=f(x-4)$

$$
\text { shift right } 4
$$

(b) $y=f(x+2)$

Shift left 2
(c) $y=f(-x)$

$$
\begin{aligned}
& \text { reflect accioss } \\
& y \text {-axis }
\end{aligned}
$$

(d) $y=-f(-x)$
reflect y we reflects X
(e) $y=f(x+2)-5$
left 2 then down S
(f) $y=f(x)+9$

$$
\text { up } q
$$

Problem 16. Give an explicit formula for each of the transformations of $g(x)=x^{2}+2$ below. For example, $g(x)+5=x^{2}+2+5=x^{2}+7$.
(a) $\frac{1}{4} g(x)$

$$
\frac{1}{4} x^{2}+\frac{1}{2}
$$

(c) $2 g(x-5)$

$$
2(x-5)^{2}+4
$$

(b) $-g(-x)$
(d) $-\frac{3}{5} g(x+1)$

$$
-x^{2}-2
$$

$$
-\frac{3}{5}(x+1)^{2}-\frac{6}{5}
$$

Problem 17. The graph of $f(x)$ appears below.

Match each of the following functions with the correct graph:
a) $2 f(x) \frac{\text { iLl }}{\text { b) } \frac{1}{3} f(x) \frac{i}{i}}$
c) $f(-x)$

e) $-f(x+1)$ \qquad
d) $f(x+2)+1$ \qquad f) $2 f(x)-3$

Problem 18. The following figure shows the graphs of $f(x)$ and $g(x)$. Is it possible for $f(x)$ to be a vertical compression of $g(x)$? Explain why or why not.

Problem 19. Give an explicit formula for each of the transformations of $f(x)=x^{2}+2$ below. Then in each case determine the factor by which the graph of $f(x)$ is horizontally/vertically compressed/stretched. For example: $f(2 x)=(2 x)^{2}+2$ is a horizontal compression of $f(x)$ by a factor of 2 .
(a) $6 f(x)$ vert siret $\rightarrow 6$ $6\left(x^{2}+2\right)$
(b) $\frac{1}{3} f(3 x)$
(c) $f(4 x)$

Vert camp \rightarrow b hor campos
$\frac{1}{3}\left(9 x^{2}+2\right)$
$16 x^{2}+2$ her comply
(d) $f\left(\frac{1}{2} x\right)$

Problem 20. If the point $(3,5)$ lies on the graph of $h(x)$, what point must lie on the graph of $h(3 x)$? What point must lie on the graph of $3 h(3 x)$?

$$
h(x):(1,5) \quad 3 h(3 x):(1,15)
$$

Problem 21. The function $h(x)$ is pictured below. Match each of the following functions with the correct graph:

(a) $h(0.5 x) \frac{V i}{1}$
(b) $2 h(x)$ \qquad
(c) $2 h(0.5 x)$ \qquad
(d) $0.5 h(2 x)$ \qquad i
(e) $h(2 x)$ \qquad

ii)
ii)

v)

iii)
(f) $0.5 h(x)$ \qquad

Problem 22. Suppose the domain of a function $j(x)$ is $0 \leq x \leq 6$, and the range of $j(x)$ is $-3 \leq j(x) \leq 3$. Determine the domain and range of the following functions. Hint: Use Problem 21 as an example.

$$
\begin{aligned}
& \text { (a) } j\left(\frac{1}{4} x\right) \\
& \text { Di } 0 \leq x \leq 24 \\
& \text { R: }-3 \leq j(x) \leq 3
\end{aligned}
$$

(b) $\frac{1}{3} j(2 x)$
$D: 0 \leq x \leq 3$
$R:-1 \leq j \leq 1$

Problem 23. The graph of $f(x)$ appears in the upper left square. Sketch the graph of the remaining functions.

Additional Problems

EP 1. The following is a graph of $f(x)$.

Find formulas for $j(x)$ and $\ell(x)$ in terms of $f(x)$.

EP 2. Sylvia is running a marathon. Let $D(t)$ represent the total distance in kilometers she has run t hours after starting. Find a formula for each of the following functions in terms of $D(t)$.
(a) $M(h)$, the total distance in meters she has run after h hours.

$$
M(h)=D(h) \cdot 1000
$$

(b) $K(m)$, the total distance in kilometers she has run after m minutes.

$$
k(m)=D\left(\frac{m}{60}\right)
$$

(c) $C(s)$, the total distance in centimeters she has run after s seconds.

$$
C(S)=M\left(\left(\frac{h}{120}\right)\right) \cdot 1000
$$

